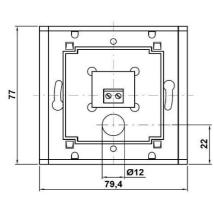
E-mail: sales@regulus.eu

Web: www.regulus.eu



RS 10 Room Sensor for IR Controllers

Main features	
Application	room temperature sensor for IR controllers
Description	Pt1000 resistance temperature sensor in a plastic blanking cover
Function	Pt1000 sensor measures room temperature based on the relation between temperature and resistance
Code	16 167

Dimensions

Technical data		
Temperature measurement	-50 to 130 ℃	
Resistance at 0 ℃	1000 Ω	
Temperature coefficient	3850 ppm / ℃	
Tolerance	В	
IP rating	IP30	
Recommended measuring curr _{(0.3 mA}		
Max. measuring current	2 mA	

Terminal board data	
Terminal pitch	3.5 mm
Conductor cross diameter	0.5 to 1.5 mm ²

Cover data	
Cover parts	blanking cover with mounting bracket, frame
Colour	white
Material	PC
Weight	40 g

Dependence of se	Dependence of sensor resistance on temperature		
θ [℃]	R [Ω]	dependence expressed by the equation:	
-50	803,06	resulting resistance R is calculated by:	
-25	901,92	$R = R_o \cdot (1 + A \cdot \theta + B \cdot \theta^2 + C \cdot [\theta - 100] \cdot \theta^3)$	
0	1000,00	for -50 to 0 ℃	
25	1097,35	$R = R_o \cdot (1 + A \cdot \theta + B \cdot \theta^2)$	
50	1193,97	for 0 to 400 ℃	
75	1289,87		
100	1385,06	$A = 3,9083 \cdot 10^{-3} \text{C}^{-1}$	
125	1479,51	$B = -5,775 \cdot 10^{-7} ^{\circ}\!\!\! \text{C}^{-2}$	
150	1573,25	$C = -4,183 \cdot 10^{-12} \text{C}^{-4}$	
175	1666,27	$R_0 = 1000 \Omega$	
200	1758,56	$\theta \dots$ design temperature [°C]	